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Plant biosecurity requires rapid identification of pathogenic organisms. While there are many pathogen-specific
diagnostic assays, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation
sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitations
during assembly and similarity searching of sequence data which extend the time needed to make a diagnostic
decision. Tominimize the amount of bioinformatic processing time needed, unique pathogen-specific sequences
(termed e-probes) were designed to be used in searches of unassembled, non-quality checked, sequence data.
E-probes have been designed and tested for several selected phytopathogens, including an RNA virus, a DNA
virus, bacteria, fungi, and an oomycete, illustrating the ability to detect several diverse plant pathogens.
E-probes of 80 or more nucleotides in length provided satisfactory levels of precision (75%). The number of
e-probes designed for each pathogen varied with the genome size of the pathogen. To give confidence to diag-
nostic calls, a statistical method of determining the presence of a given pathogenwas developed, inwhich target
e-probe signals (detection signal) are compared to signals generated by a decoy set of e-probes (background sig-
nal). The E-probe Diagnostic Nucleic acid Analysis (EDNA) process provides the framework for a new sequence-
based detection system that eliminates the need for assembly of NGS data.

Published by Elsevier B.V.
1. Introduction

Agricultural biosecurity is a priority for ensuring uninterrupted
international and interstate trade, which in turn ensures an abundant
food supply. With increased movement of commodities across state
and national borders, the risk of introduction of exotic plant pathogens
has risen significantly over the past few decades (Gamliel et al., 2008).
To compound this risk, the lag time from pathogen introduction to
appearance of disease symptoms provides opportunity for diseases to
spread, limiting abilities for containment and eradication (Gamliel
et al., 2008). Particularly for plant pathogens, for which vaccines are
impossible and post infection therapies are limited and expensive,
early detection and correct diagnoses are critical. Currently, plant path-
ogens are detected primarily by immunoassays, such as enzyme-linked
immunosorbance assay (ELISA) and immune-strip tests, and nucleic
acid based assays, such as real time PCR or microarray hybridization
(Schaad et al., 2003). Immunoassays are relatively simple and quick,
butmay lack both the level of sensitivity required for agrosecurity appli-
cations and the ability to detect multiple pathogen species in a single
1, Fort Detrick,MD21702-5023,
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assay (Schaad et al., 2003; Postnikova et al., 2008). Nucleic acid based
techniques for detection and identification of plant pathogens, such as
end-point polymerase chain reaction (PCR) and quantitative real-time
PCR (qPCR) are more sensitive and selective than immunoassays, but
they too may be limited in the number of pathogenic organisms that
can be detected simultaneously (Postnikova et al., 2008). Both immuno-
assays and nucleic acid-based tests require previous characterization of
the pathogen on either the protein or sequence level, and therefore lack
the ability to detect uncharacterized plant pathogens. Although individ-
ual pathogen nucleic acid and immunoassays are readily available, cur-
rent screening methods have limited ability to detect multiple plant
pathogens concurrently in an efficient and cost effective manner. DNA
microarrays, PCR-electrospray ionization/MS, multilocus sequencing
typing, and simple sequence repeat assays all have the capacity to
search formultiple pathogens and/ormultiple diagnostic targets, but re-
quire existing pathogen characterization, which relies upon continuous
development and maintenance of reference databases (Schaad et al.,
2003; Postnikova et al., 2008).

Next generation sequencing (NGS) is a relatively recent technology
that allows for the generation of very large amounts of sequence data
from a given sample (Ronaghi, 2001). Because various NGS platform
technologies differ in read length (20 bp to approximately 1000 bp)
and in the total number of reads (100,000 to 1 million), the amount of
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overall sequence data produced varies widely (Tucker et al., 2009). The
productivity of NGS technology far exceeds that of traditional
Sanger sequencing (Pop and Salzberg, 2008; Magi et al., 2010;
Metzker, 2010). NGS of environmental samples has enabled the field
of metagenomics, in which any and all nucleic acids in a sample are
potential candidates for sequencing templates. Thus, NGS generates a
sequencing profile that represents any and all organisms presentwithin
the sample (Jones, 2010; Tyson et al., 2004). Metagenomics has been
applied to several types of environmental samples including, seawater,
ship bilge water, intestinal tracts of various animals and contaminated
environments such as acid mine drainage systems (Tyson et al., 2004;
Daniel, 2005; Breitbart et al., 2003; Gill et al., 2006; Tringe and Rubin,
2005). A metagenomic approach also could be applied to disease diag-
nostics, providing the benefit that NGS could detect any and all
microbes in a given sample. A metagenomic approach has already
been used to detect previously unknown pathogens in a variety of or-
ganisms, including mammals, insects, and plants (Adams et al., 2009;
Cox-Foster et al., 2007; Palacios et al., 2008). In addition, NGS can be
used to discover unknown pathogens and microbes, and has already
been applied to the detection of both known and unknownplant viruses
(Adams et al., 2009; Roossinck et al., 2010).

The advantage of NGS over other sequencing technologies is the
volume (400 MB–28 GB) of data generated (Metzker, 2010; Reis-Filho,
2009). From a different perspective, the volumes of data generated by
Fig. 1. Experimental flow of E-probe Diag
NGS could be a detriment to a diagnostician, as bioinformatic processing
becomes a limiting factor in high throughput applications (Pop and
Salzberg, 2008; Magi et al., 2010). For example, consider 200 l of sea-
water containing over 5000 different viruses (Breitbart et al., 2002). If
a metagenomics approach is used for plant pathogen detection within
this sample, plant pathogen-specific sequences will likely make up only
a small percentage of the total reads (Adams et al., 2009; Roossinck
et al., 2010). In contrast, plants infected with viruses may have a much
higher percentage of the total nucleic acid composed of pathogen
sequences (Kreuze et al., 2009). The host sequences that would make
up the majority of an infected plant metagenome sample are essentially
unimportant for diagnosis.

The novel assay developed in this research (Fig. 1), and reported
herein, termed E-probe Detection of Nucleic acid Analysis (EDNA), is
a bioinformatic pipeline thatminimizes and ignores irrelevant sequence
data thereby focusing on specific pathogen-associated sequences. Mock
sample databases (MSDs), simulating 454-pyrosequencing runs from
plant pathogen infected plants, were generated. Rather than assessing
the presence or absence of pathogens by BLAST of all sequences
against a curated database, such as the nucleotide sequence databases
of GenBank, the NGS metagenomic data was assessed using pathogen
unique sequences termed target e-probes, incorporating local BLAST
searches of designed e-probes against databases of raw sequence
reads on local computer systems. This modified bioinformatic approach
nostic Nucleic acid Analysis pipeline.
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resulted in the rapid detection of pathogen-associated sequences with-
out extensive analysis of the metagenome.

2. Materials and methods

2.1. Pathogens and their sequences

The plant pathogens studied here belong to three general groups,
viral, prokaryotic, and eukaryotic pathogens. The chosen systems repre-
sent awide variety of plant pathogens and have global economic impor-
tance (Table 1). Two viruseswere used: Plumpox virus, a single stranded
RNA virus, and Bean golden mosaic virus, which is a bipartite DNA virus.
Table 1
Comparison of the amount of genome coverage of e-probes across tested pathogens.

Name Source Near neighbor Source

Bean golden mosaic
virus

NC_004042
NC_004043

Abutilon mosaic
virus

NC_001928
NC_001929

Plum pox virus NC_001445 Pepper mottle virus NC_001517

Spiroplasma citri 115252846
110005886
110005766
110005758
11000748
110005735
110005716
110005696
110005687
110005683
110005675
110005664
110005652
110005641
110005622
110005605
110005592
110005560
110005522
110005436
110005327
110005285
110005260
110005199
110005145
110005138
110005098
110005060
110005027
110004948
110004868
110004796
110004744
110004631
110004607
110004455
110004127
110004055
110003907M

Mycobacterium bovis NC_008769

Ca. L. asiaticus NC_012985 Agrobacterium
tumefaciens

AE007869

Xanthamonas
oryzae

CP000967 Xylella fastidiosa NC_002488
NC_002489
NC_002490

Xylella fastidiosa NC_002488
NC_002489
NC_002490

Xanthomonas oryzae CP000967

Ralstonia
solanacearum

NC_003295
NC_003296

Ralstonia pickettii NC_010682
NC_010678
NC_010683

Puccinia graminis
[29]

AAWC01000001
AAWC01004563

Puccinia triticina ADAS01000001
ADAS01038776

Phytophora
ramorum

AAQX01000001
AAQX01007589

Phytophora
infestants

AATU01000001
AATU01018288
Prokaryotic pathogens included Xylella fastidiosa 9a5c, the causal bacte-
rium of citrus variegated chlorosis, Xanthomonas oryzae pv. oryzae,
which causes bacterial blight in rice, and Ralstonia solanacearum race 3
biovar 2, a select agent that causeswilting of a variety of crops including
potatoes and tomatoes, Candidatus Liberibacter asiaticus, a bacterium re-
sponsible for citrus greening, and Spiroplasma citri, which causes citrus
stubborn disease. Eukaryotic pathogens included: Puccinia graminis a
rust fungus, causing the stem rust of wheat and affecting a very broad
host range including 365 cereals and grasses in 54 genera (Hodson
et al., 2005); Phytophthora ramorum, a stramenopile with a wide host
range of 23 species in 12 plant families (Rizzo and Garbelotto, 2003;
Tyler et al., 2006); and Phakopsora pachyrhizi, which causes soybean
Original sequence
size (kb)

# 80 bases e-probes
preliminary (BLAST check)

Total probe
length (kb)

Genome %
coverage

5.23 4
(2)

0.32
(0.16)

6.12%
(3.06%)

9.74 8
(5)

0.64
(0.40)

6.57%
(4.11%)

1525.76 423
(309)

33.84
(24.72)

2.22%
(1.62%)

1226.70 502
(469)

40.16
(37.52)

3.27%
(3.06%)

2679.31 2597
(1832)

207.76
(146.56)

7.75%
(5.47%)

5240.08 1459
(1041)

116.72
(83.28)

2.23%
(1.59%)

3716.41 1964
(1418)

157.12
(113.44)

(4.23%)
(3.05%)

66,652.40 21,790
(21,635)

1743.20
(1730.80)

2.66%
(2.65%)

88,644.63 21,286
(18,945)

1702.88
(1515.60)

1.92%
(1.71%)

ncbi-n:NC_004043
ncbi-n:NC_004043
ncbi-n:NC_001929
ncbi-n:NC_001929
ncbi-n:NC_001445
ncbi-n:NC_001517
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-tnm:110004055
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ncbi-tnm:110004055
ncbi-tnm:110004055
ncbi-n:NC_008769
ncbi-n:NC_012985
ncbi-n:AE007869
ncbi-n:CP000967
ncbi-n:NC_002490
ncbi-n:NC_002490
ncbi-n:NC_002490
ncbi-n:NC_002490
ncbi-n:NC_002490
ncbi-n:NC_002490
ncbi-n:CP000967
ncbi-n:NC_003296
ncbi-n:NC_003296
ncbi-n:NC_010683
ncbi-n:NC_010683
ncbi-n:NC_010683
ncbi-wgs:AAWC01004563
ncbi-wgs:AAWC01004563
ncbi-wgs:ADAS01038776
ncbi-wgs:ADAS01038776
ncbi-wgs:AAQX01007589
ncbi-wgs:AAQX01007589
ncbi-wgs:AATU01018288
ncbi-wgs:AATU01018288
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rust, a widespread pathogen that now can be found in Africa, Asia,
Australia, South America and Hawaii (Miles et al., 2003). For each path-
ogen, a near neighbor was chosen based on a close phylogenetic rela-
tionship, and the availability of complete genome sequence (Table 1).
Grapevine, Vitis vinifera (GenBank: PRJNA33471), was chosen as the
host background due to the availability of its genome sequence, and
its genome size,which iswithin the range of those of full plant genomes.
While grapevine is not a natural host for many of the chosen pathogens,
it serves well as an example of background sequences in which the
target pathogen sequences exist.

2.2. Experimental flow

The principle behindEDNA is tominimize the bioinformatic process-
ing by eliminating post-sequencing assembly, quality checks, and
extensive BLAST searching of individual sequence reads. Rather than a
traditional metagenome-based analysis of sequencing data, a simple
sample database composed of raw unassembled sequence reads is
generated. E-probes are then used to query the sequence database to as-
sess the presence or absence of the target pathogen, in effect simulating
a microarray or traditional hybridization assay in silico.

2.3. E-probe design

Pathogen-specific sequence queries were designed using a modified
version of the Tool for Oligonucleotide Fingerprint Identification (TOFI)
(Vijaya Satya et al., 2008). The basic TOFI pipeline includes three basic
steps: comparison of pathogen sequences with those of near neighbors,
thermodynamic optimization, and a BLAST search check for uniqueness.
The EDNA query design process is similar, with the following changes.
For in silico querying, the e-probe thermodynamic optimization
step is omitted because the thermodynamic properties of the unique
sequences are irrelevant. Parameters of interest to a BLAST search
and/or important to a successful NGS run were added in its place. In
the BLAST parameter step, the query sequence length was restricted
to standardize e-values from the BLAST search and candidate e-probes
containing a homo-oligomer (five or more of the same nucleotide
in tandem) were removed because of the inherent miscalling of
homo-oligomers in many NGS platforms. To test the optimal length of
e-probes the BLAST check step was omitted, and the preliminary
e-probes were used in the optimization of e-probe length. After optimi-
zation of e-probe length, a BLAST check and manual editing were
reintroduced to assure specificity (Table 1). Any e-probes that hit a
species different than the target with an e-value of 1 × 10−10 or
below were removed from the final e-probe set.

Near neighbor comparisons were conducted as published (Vijaya
Satya et al., 2008) with a maximum number of gaps equal to zero, a
minimum probe length equal to 20 nt, and a maximum probe length
equal to 4000 nt. The near neighbor selection was performed based
on two criteria: complete genome availability in NCBI Genbank and
close relationship to the target pathogen. The BLAST parameter step
has two possible variables, the length of the designed query and the
number of nucleotides that would be considered a homo-oligomer. A
range of query lengths were designed, at intervals of 20 (20, 40, 60,
80, 100, 120, and 140) nucleotides, while the number of nucleotides
considered to be a homo-oligomer was held constant at five.

2.4. Mock database construction

To test the designed queries, a data set consisting of both known
host and pathogen genome segments was generated. Simulation of
massively parallel sequencing was performed using MetaSim software
(Vijaya Satya et al., 2008). The simulation includes planned mistakes
in base calling, aswell as a range of read lengths, both ofwhich are com-
mon for 454, or Illumina sequencing. The resulting databases contained
10,000 simulated reads, each approximately 400 ± 30 nucleotides, or
62 nucleotides, respectively. Abundance values (representing the
given amount of nucleic acid within a sample) for host genomic
sequences were set at a default of 100, while host mitochondrial and
chloroplast sequenceswere given an abundance value of 1000,meaning
that for every genomic sequence there will be 10 mitochondrial and
chloroplast sequences. This value was chosen arbitrarily. Pathogen
abundance values were varied to generate a number of reads corre-
sponding to the percent of the database that is made up of pathogen
sequences (i.e. 25% pathogen sequences is equivalent to 2500 pathogen
reads in a 10,000 read database). The databases were placed into cate-
gories based on the pathogen sequence percentage: those with 15–
25% pathogen sequences were considered high, with 5–15% medium,
with 0.5–5% low, and with less than 0.5% very low. These percentages
were chosen arbitrarily. Each category contained three databases,
which were considered as replicates within the category.

2.5. Querying mock databases

MSDs were queried using BLASTn with an e-value set at 50.
Pathogen-specific e-probe sets were used as queries, and the MSDs
served as reference databases. A match was defined as an instance
where an individual e-probe was found in an MSD, such that the total
number of matches must be equal to or less than the total number of
e-probes. A hit was defined as any instance where an MSD read had a
counterpart e-probe. A single match could be made up of multiple
hits. Once the query search was conducted, the data was parsed
according to different e-value thresholds to find an e-value threshold
with minimal false positives, with steps at 1 × 10−3, 1 × 10−6, and
1 × 10−9.

The decision to designate a sample as positive or negative for a path-
ogen is crucial for any diagnostic assay. The criterion used to determine
a positive sample in this assay was the presence of pathogen-specific
sequences. It was likely that many of these sequences would be similar
to sequences that belong to either the plant host, or to a different mi-
crobe that resides in the sample. Each e-probe set is designed to be
unique to a specific pathogen. The signals of these sets were compared
to the signals of decoy sets, which represent background signal. To gen-
erate a decoy set of e-probes, the designed target set of e-probes was
reversed in sequence. Each set was then used as queries in a BLASTn
search against the MSD. Each probe in both sets was given a score
based on the e-value and the percent coverage of the top n hit(s),
where n equals [50, 10, 5, 1] (Eq. (1), where n is the hit number, Eval
is the e-value of the nth hit, and %cov is the percent of the e-probe
contributing to the high scoring segment pairing).

Xn

h−1

%cov:ð Þ � − logEval½ �f g: ð1Þ

The two sets of scores were then compared using a T-test. Three
tiers of diagnostic calls were used in the statistical test, positive
(p-value ≤ 0.05), suspect (p-value ≤ 0.1) and negative (p-value N 0.1).
No significant difference between the two sets indicated no evidence for
the presence of pathogen sequences, and the sample was designated
negative for the pathogen.

3. Results

3.1. General

Plant pathogenic query production was analyzed in relation to ge-
nome size for two viruses,five bacteria, two fungi and one stramenopile.
The targeted viral (Plum pox virus and Bean golden mosaic virus), fungal
(P. graminis and P. pachyrhizi) and stramenopile (P. ramorum) plant
pathogens were compared to near neighbors of the same species. For
the bacteria, the Ca. L. asiaticus near neighbor was from the same



Fig. 2. The total number of hits from a BLAST search of 80 base target virus e-probe sets against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, (B) 5–15%,
(C) 0.5–5% and (D) b0.5% pathogen read abundances.
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species, while those of the other 3 bacteria were from a closely related
species (X. oryzae paired with X. fastidiosa and vice versa). Fungal path-
ogens P. graminis and P. pachyrhizi had the same near neighbor, Puccinia
Fig. 3. The total number of hits from a BLAST search of 80 base target prokaryotic pathogen e-pr
(B) 5–15%, (C) 0.5–5% and (D) b0.5% pathogen read abundances.
triticina. In addition, P. pachyrhizi was found to be broadly similar in
biological attributes to P. triticina (Pivonia and Yang, 2006). In the case
of P. ramorum, P. infestans was used as near neighbor (Table 1). The
obe sets againstMSDs containing grapevine and target pathogen sequences at (A) 15–25%,



Fig. 4. The total number of hits from a BLAST search of 80 base eukaryotic pathogens e-probe sets against MSDs containing grapevine and target pathogen sequences at (A) 15–25%,
(B) 5–15%, (C) 0.5–5% and (D) b0.5% pathogen read abundances.

Fig. 5. Number of matches (positive e-probes) for each given length of e-probes, for target viruses at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) b0.5% pathogen read abundances.
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lack of a spiroplasma related to S. citri resulted in the selection of a near
neighbor that was related at the order level (Table 1). The genome sizes
of the pathogens used ranged from 5.23 knt to 88 Mnt, and the number
of queries ranged from 4 to 21,790. As the genome size of the plant
pathogen increased so did the total number of queries for the targeted
pathogen. The total length of the combined e-probes was proportional
to the total number of e-probes, and to the genome size. The percentage
of genome covered ranged from 1.74 to 6.57 without any correlation
with genome size or total query number (Table 1).

The number of hits at a threshold of 1 × 10−3, 1 × 10−6, or 1 × 10−9

received for each pathogen was determined (Figs. 2–4). The number of
positive hits rose with the size of the pathogen genome. As expected,
the number of hits also increased with increasing pathogen proportions.
At lower proportions, there was an increase in the standard deviation of
the number of hits. A general similarity of the number of hits can be seen
for each pathogen type, with prokaryotic pathogens having the greatest
variability across pathogens.

The number of matches was compared to pathogen abundance
in the MSDs. A match was defined as a single query found within an
MSD, such that one match could represent multiple hits. As the patho-
gen abundance increased, the number of matches increased, as
expected. The number of hits was nearly always greater than the num-
ber of matches, demonstrating that single queries frequently generated
multiple hits in an MSD (Figs. 5–7). The number of prokaryotic patho-
gen e-probe matches was related to the number of e-probes available
for the pathogen, in other words, the more e-probes designed for a
given pathogen, the more matches were attained in a BLAST search.
For example, a Ca. L. asiaticus e-probe set of 80 nt length consists of
502 e-probes, and when queried with a low pathogen ratio MSD,
Fig. 6. Number of matches (positive e-probes) for each given length of e-probes, for target pr
abundances.
received 169 matches. X. oryzae contained 2597 e-probes with 345
matches. In contrast, the number of matches for P. ramorum (1645)
was less than the number of matches for P. graminis (1998), despite
the greater number of queries for the former. For the viral pathogens a
matchwas found for every query available in high, normal and lowpath-
ogen abundance MSDs, and the number of matches in very low abun-
dance MSDs was approximately half of the number of available queries
(2 matches/4 e-probes in the case of BGMV) (Figs. 5–7, Table 1).

3.2. Optimization of e-probe length

To determine the optimum e-probe length, precision was calculated
for each of the e-probe sets (Table 2), in which each hit is either a true
positive (a pairing of e-probe and pathogen sequence), or false positive
(a pairing of e-probe and non-pathogen sequence). We calculated the
precision as the number of pathogenic hits (true positive) divided by
the total number of hits (hits to pathogen or hits to host). For each of
the pathogens, e-probe lengths below 80 nt were substandard (preci-
sion less than 75%) as queries of very low pathogen ratio (b0.5%)
MSDs. Viral e-probe sets had high precision, most likely due to themin-
imal similarity between viral and eukaryotic sequences. For prokaryotic
and eukaryotic pathogens, at abundances greater than 0.5%, the specific-
ity was greater than 80.4% at any e-probe length. With the very low
abundance MSDs, the precision varied between 14.1 and 100%.

The effect of varying e-probe lengths from 20 to 140 nt on the
matches generated by searches on the MSDs was determined. As
expected, for each pathogen, match numbers decreased as the length
of the e-probes increased, because the number of longer e-probes
designed was much lower than that for shorter e-probes. In general,
okaryotic pathogens at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) b0.5% pathogen read



Fig. 7. Number of matches (positive e-probes) for each given length of e-probes, for target eukaryotic pathogens at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) b0.5% pathogen read
abundances.
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each pathogen type (virus, bacterial, and eukaryotic) had a similar num-
ber of matches for each member within a group (Figs. 5–7). One excep-
tion was X. oryzae, which showed no such downward trend (Fig. 6).
Almost all pathogens were detected using every query length. The
other exception was R. solanacearum in very low pathogen abundance
MSDs, in which an average of a single match was found for themajority
of query lengths (40, 80, 100, 120, and 140 nt). P. ramorum and
P. graminis showed the smallest number ofmatches of all the pathogens
when very low pathogen proportion MSDs were queried with 140 nt
e-probes. This low number of matches could be due to the random
selection of sequences when constructing MSDs because fungal and
stramenopile genomes are larger than viral and bacterial genomes,
allowing the presence of portions of the genome in the MSDs that
have a lowdensity of e-probe sequences. This phenomenon ismost like-
ly to occur for low pathogen proportions and large pathogen genomes.

3.3. E-value threshold

All four categories of mock databases (high, medium, low, and very
low) were queried using the 80 nt e-probes for all of the target patho-
gens. Pathogen reads were detected via e-probe based BLAST search
routinely with a threshold e-value of 1 × 10−3. Using 80 nt queries,
all of the pathogens were also detected in very low abundance data-
bases, in some but not all replicates (Figs. 2–4, Supplementary Table 1).

Some e-probes generated false positivematches, i.e. instances when
the e-probe sequence found a host counterpart in theMSD. The number
of false positive matches was directly related to the e-values used in the
BLASTn searches of the MSDs, with higher e-values generating more
false positives. Overall, the eukaryotic pathogen simulations with a
threshold e-value of 1 × 10−3 generated the highest number of false
positive matches and hits (Supplemental Table 1). Bacterial pathogen
simulations also generated false positives; however these were fewer
(5 or fewer per database). No false positives at a threshold e-value of
1 × 10−3were observed in viralMSDs. The e-valuewas adjusted during
the parsing step by using three different threshold e-values of 1 × 10−3,
1 × 10−6, and 1 × 10−9. When the pathogens were analyzed using
lower e-values, the number of false positives per database decreased
from an average of 1 for prokaryotic e-probe sets, and 8 for eukaryotic
e-probe sets to 0 for both.

Using the threshold values of either 1 × 10−6 or 1 × 10−9 also de-
creased the total number of matches and hits; particularly for fungal
pathogens, i.e. for P. graminis, the number of matches decreased from
1998 matches (e-value of 1 × 10−3) to 1530 matches (1 × 10−9).
Among prokaryotic pathogens, the greatest decrease in total matches
and hits was observed with X. oryzae, which decreased from 2597 to
1832 at e-values of 1 × 10−3 to 1 × 10−9, respectively. This difference
of 765 fewer e-probes did not lessen the effectiveness of pathogen
detection. Instead it decreased the number of false positives due to the
greater stringency placed on the bioinformatic system. For viruses, the
total number of matches was not affected by increased stringency
(lower e-values); however the total number of hits was reduced with
lower e-value BLASTn (Supplementary Table 1).Mock sample databases
also were generated using read lengths of 62 nt and with the error
model found for a typical Illumina run (Richter et al., 2008). EDNA anal-
ysis showed similar results to the 454 simulations (data not shown).

3.4. BLAST check comparison

False positives were reduced in number by removing e-probes that
have similarity to known sequences in NCBI. Each 80 nt e-probe set



Table 2
Table showing the precision (in percentage) at varying probe lengths and different path-
ogenic concentrations.

Name E-probe length 15–25% 5–15% 0.5–5% b0.5%

BGMV 20 100 100 100 100
40 100 100 100 100
60 100 99.97 100 100
80 100 100 100 100

100 100 100 100 100
120 100 100 100 100
140 100 100 100 100

PPV 20 100 100 100 100
40 100 100 100 100
60 100 100 100 100
80 100 100 100 100

100 100 100 100 100
120 100 100 100 100
140 100 100 100 100

Spiro 20 97.66 94.32 80.38 33.36
40 98.89 98.14 91.37 51.1
60 98.94 98.75 93.91 54.44
80 99.56 99.38 96.2 78.59

100 99.73 99.03 93.37 72.44
120 99.78 99.28 97.4 68.33
140 99.53 98.84 99.02 63.89

Liberibacter 20 98.97 98.31 92.42 55.58
40 99.48 99.27 96.35 54.79
60 99.26 98.72 96.42 62.05
80 99.74 99.84 98.06 81.24

100 99.63 99.05 96.44 63.49
120 99.49 99.33 97.17 57.08
140 99.33 99.12 96.47 40.12

Xanthomonas 20 99.96 100 99.58 84.2
40 100 99.78 99.58 87.91
60 99.95 99.81 99.51 84.21
80 99.93 99.95 99.87 93.72

100 99.98 99.89 99.87 93.91
120 99.9 99.89 99.86 94.57
140 99.98 99.95 99.87 100

Xylella 20 99.96 99.83 99.39 98.1
40 99.97 99.87 100 97.09
60 99.93 99.52 99.72 96.41
80 99.91 99.71 99.68 94.98

100 99.86 99.67 99.63 94.42
120 99.89 99.61 99.56 93.07
140 99.87 99.53 99.52 93.07

Ralstonia 20 100 98.89 99.52 97.94
40 99.91 99.83 99.42 95.38
60 99.90 99.87 98.78 93.10
80 100 100 99.42 92.86

100 100 100 99.02 90.91
120 100 100 98.57 75.00
140 100 100 98.00 75.00

Phytophthora ramorum 20 99.45 98.95 96.41 24.78
40 99.75 99.57 97.66 30.58
60 99.66 99.37 95.68 14.14
80 99.76 99.68 98.52 48.94

100 98.04 100 100 100
120 99.75 99.26 98.11 45.45
140 99.43 99.22 95.77 28.57

Puccinia graminis 20 98.28 96.52 87.8 30.54
40 99.36 98.65 94.12 44.22
60 99.17 97.87 92.69 35.86
80 99.69 99.35 97.77 56.9

100 99.71 99.2 98.5 60.78
120 99.75 99.28 98.07 66.67
140 99.91 99.45 98.21 57.14
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was used as queries in a search against the NCBI GenBank nt database.
E-probes with hits at an e-value of 1 × 10−10 or lower were removed
from the probe set. This decreased the number of probes per set by up
to 50% (Table 1). Comparing the performance of BLAST-checked
e-probe sets showed a slight reduction in the number of false positive
hits, with a larger reduction in the number of matches and total hits
(Supplemental Table 1).
3.5. Determination of positives and negatives

Using the abovemethod, wewere able to correctly call samples pos-
itive for all positive samples except for those at a very low abundance
(b0.5% pathogen reads) (Table 3). At this abundance there were
mixed results, at times calling the sample positive while other times
calling it negative. R. solanacearum was not detected in very low abun-
dance MSDs. Pathogen negative MSDs (MSDs without pathogens)
were all negative or suspect for viruses, S. citri, and R. solanacearum.
False positives were most common in eukaryotic pathogens. When
the number of top hits (n in Eq. (1)) was lowered in the scoring step,
the pathogen negative MSDs were correctly identified in some, but
not all, replicates (Table 3).

4. Discussion

There are multiple advantages to using a metagenomic-based ap-
proach to pathogen diagnostics. Advances in NGS have made it possible
to generate billions of bases of sequence for any given sample, creating
metagenomes that represent a complete profile of all organisms in a
given nucleic acid sample, including host, endophytes and pathogens
(Jones, 2010; Tyson et al., 2004). This presents the very real probability
that any and all microbes in any given sample could be identified.
Metagenomic approaches have been used in multiple instances to sug-
gest the cause of unknown diseases (Adams et al., 2009; Cox-Foster
et al., 2007; Palacios et al., 2008), but two factors would seem to pre-
clude the use of metagenomic sequencing as an everyday diagnostic
tool.

The first detriment to adopting metagenomic-based diagnostics is
the current per run cost. The typical approach to ametagenome diagno-
sis is nucleic acid extraction, sequencing, sequence assembly, and BLAST
analysis of the assembled contigs. An examination of recent history sug-
gests that sequencing technologies will likely become less expensive,
due to the technologies becoming faster, more accessible and the
sequencing more processive over time, outpacing Moore's Law. This
prediction suggests that NGS costs may not be a long term restraint,
particularly when combined with barcoding (Parameswaran et al.,
2007). However, the very same advances that drive down per sample
costs of sequencing create additional data handling problems. As NGS
becomes less expensive, faster and the length of reads increases, the
number of bases sequenced in a single run will increase exponentially.
These same advances in NGS will have an additional exponential
growth effect on the databases (i.e. GenBank and its subsidiaries) that
are used for the BLAST searching of sequence data, suggesting that the
current metagenomic approach to pathogen diagnostics will eventually
become too computationally intensive for everyday use.

The objective of this work was to find a simplified bioinformatic
approach for dealing with the exponential growth and complexity of
NGS metagenome data, which could be handled on a standard personal
computerwithout extensive computational delays. Todo this,we devel-
oped a protocol (EDNA) in which the input NGS data would be treated
as the searchable database, and this sequence database would be que-
ried by diagnostic signature sequences (e-probes) without the need
for assembly or quality checks. This approach allows the user to limit
and control both the size of the searchable database and the size of
the searching query set.

The EDNA approach was tested using a series of MSDs representing
potential metagenomes with pathogen sequences in a plant back-
ground. Representatives of multiple taxonomic groups of plant patho-
gens were used, including an RNA virus, a DNA virus, a spiroplasma,
prokaryotes, a stramenopile, and a fungus. Diagnostic e-probe se-
quences were selected at a range of lengths, and used to query MSDs
with differing levels of pathogen abundance (from 0.5% pathogen
reads to 25% pathogen reads). EDNA was successful at detecting all
pathogens at low,mediumand high levels (everything above 0.5% path-
ogen reads in theMSD). The number ofmatches (any instancewhere an



Table 3
p-Values of EDNA diagnostic call.

15–25% 5–15% 0.5–5% b0.5% 0%

BGMV Top 50 0.031 0.031 0.000 0.026 0.022 0.000 0.000 0.000 0.001 0.007 0.004 0.384 0.077 0.765 0.243
Top 10 0.000 0.034 0.000 0.000 0.042 0.003 0.001 0.006 0.001 0.008 0.005 0.582 0.151 0.327 0.611
Top 5 0.012 0.012 0.000 0.000 0.000 0.000 0.007 0.005 0.018 0.008 0.045 0.654 0.432 0.396 0.590
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.006 0.004 0.788 0.769 0.978 0.936

PPV Top 50 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.009 0.035 0.374 0.018 0.052 0.334 0.310 0.096
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.026 0.397 0.019 0.057 0.562 0.629 0.153
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.390 0.020 0.057 0.681 0.953 0.489
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.376 0.020 0.007 0.904 0.384 0.947

S. citri Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.164 0.202 0.001 0.970 0.431 0.277
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.102 0.001 0.673 0.786 0.170
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.052 0.109 0.001 0.910 0.277 0.383
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.098 0.001 0.904 0.384 0.947

Ca. L. asiaticus Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.001 0.027 0.009 0.027
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.017 0.006 0.198 0.003 0.009
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.023 0.021 0.308 0.003 0.039
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.030 0.042 0.631 0.005 0.029

R. solanacearum Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.605 0.648 0.011 0.061 0.174 0.056
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.586 0.057 0.025 0.256 0.656 0.208
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.081 0.012 0.223 0.105 0.448 0.231
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.073 0.008 0.067 0.218 0.953 0.392

X. oryzea Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.811 0.002 0.000 0.000 0.000
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.824 0.173 0.650 0.000 0.001 0.002
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.004 0.074 0.521 0.157 0.398
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.033 0.016 0.016 0.089

X. fastidiosa Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.745 0.306 0.025 0.316 0.222 0.271
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.018 0.003 0.000 0.006
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.007 0.004 0.000 0.027
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.026 0.031 0.001 0.514

P. graminis Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.001 0.000 0.000 0.000
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.428 0.894 0.413 0.009 0.020
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

P. ramorum Top 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.508 0.000 0.000 0.000
Top 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.479 0.049 0.000 0.014 0.000
Top 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.350 0.004 0.000 0.338 0.007 0.019
Top 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.257
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individual e-probe finds a counterpart or counterparts in the database)
and hits (cumulative total of e-probe/counterpart finds) were correlat-
ed to the number of e-probes available for a pathogen, to the pathogen
abundance, to the e-value threshold used when parsing the data, and
inversely correlated to the length of the e-probes. Below the low patho-
gen threshold, the EDNA results were mixed, suggesting that EDNA
has a threshold of detection in its current format. However it should
be noted that the limit of detection could be improved to suit user
needs by adjusting the number of e-probes, the length of the e-probes
and/or the parsing e-value.

Not surprisingly, EDNA generated some false positive hits and
matches. The number of false positives appeared to remain relatively
the same regardless of the pathogen abundance (Supplemental
Table 1), and were problematic only in the very low abundance MSDs.
Viruses were completely free of false positives at all concentrations
of pathogen reads, which might be expected considering the lack of
related sequences in the host setting. Prokaryotes have chloroplast
and mitochondrial counterparts in the host MSD, and there were occa-
sional false positive hits and matches using prokaryotic e-probes. Over-
all, eukaryotic pathogen e-probes were the most problematic, as might
be expected when confronted with a eukaryotic host background. Very
low pathogen abundance simulations were not distinguished from
pathogen-free MSDs, and generated the highest number of false posi-
tive matches and hits (Supplemental Table 1). However, EDNA is
flexible enough to generate higher precision, by raising the e-value
threshold required for calling a positive hit. Both P. graminis and
P. ramorum showed fewer (zero or one) false positive hits when the
e-value was lowered to 1 × 10−9, and the prokaryotic pathogen
e-probes were completely specific when the parsing e-value was
lowered to 1 × 10−6. Larger, more complex genomes and the conserva-
tion of genes and sequences between pathogen and host (eukaryotic
pathogens) require lower e-value cutoff levels. It should also be noted
that some of the near neighbors were less related to the target organ-
isms, a limitation driven by the lack of available sequenced genomes.
Improved near neighbors, which should become available as more
pathogen genomes are sequenced, will also improve precision.

A second approach for improving specificity involved improving
the screening of potential e-probes. Clearly, as genome size increases
the number of e-probes generated increases in proportion. Removal of
a number of e-probes from the larger pathogen genome screens
would likely not affect the overall limit of detection. The e-probes
from all pathogenswere searched against GenBank, as is done in primer
selection, to eliminate a number of false positive generating e-probes.
This strategy may be of limited use for plant pathogens, however, as
the majority of environmental microbes in a typical plant metagenome
have noGenBank counterpart (Pivonia and Yang, 2006). The addition of
a healthy control BLAST, searching healthy control asymptomatic host
environmental sample sequence databases for the presence of potential
false positive queries might eliminate some e-probes that would react
to host or endophyte sequences not available in GenBank. Regardless,
much like limit of detection, EDNA precision could be adjusted up or
down as needed in the e-probe design (by adjusting e-probe length
or near neighbor selection) or during database searching (adjusting
e-value threshold). As an added advantage, adjusting e-value threshold
and choosing “general” e-probes could allow for searching for related
organisms that are not the specific target organism.

A key to any diagnostic method is determining the level of positive
“signal” necessary to confirm that a pathogen is present in a given sam-
ple. For molecular techniques such as PCR, the presence or absence of a
product is easily distinguished. However when the positive/negative
decision is based on a quantitative measurement, such as fluorescence
or absorbance in ELISA, the determination involves some level of
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statistical analysis. The number of matches and hits returned from a
sequence database query within the proposed EDNA concept is not
entirely dissimilar to these quantitative approaches, in which it is criti-
cal to distinguish between a true signal (e.g. matches that represent
pathogen sequences) and a false “signal” (e.g. matches where query
sequence is identical or nearly identical to non-pathogen sequence).
In ELISA, a common approach is to make a diagnostic decision by com-
paring the fluorescence value of a sample well to those of a set of nega-
tive control wells, with a cutoff defined as a certain number of standard
deviations over background. To utilize a similar approach for NGS, a
basal level of false positives (erroneous query matches) was deter-
mined. Decoy probe sets were developed for every pathogen, and
these decoy e-probe sets were used to determine the chances that a
relatively random sequence would find a counterpart in a eukaryotic
host background by chance. The decoy comparison method was partic-
ularly successful with virus pathogens, and less successful with eukary-
otic pathogens. This finding indicates that statistical approaches could
be developed to assess the accuracy of positive/negative determinations
in NGS-based diagnostics. As in other diagnostic assays, the balance
between specificity and limit of detection is a necessity in this bioinfor-
matic approach to diagnostics.

The theoretical ability of next generation sequencing coupled
with bioinformatics to detect highly consequential plant pathogens
(EDNA), at varying abundances, and in a complex host sample was
validated. The advantage of the EDNA system is that it can be adjusted
or designed to address a range of applications and/or the scientific
needs in a variety of fields including bioinformatics, epidemiology,
detection and diagnostics of human, animal, and plant pathogens, mon-
itoring and surveillance, quarantine, andmicrobial forensics. EDNA alle-
viates the computational work load routinely associated with classic
metagenomic assembly and BLAST-based approaches; allowing plant
pathologists to use personal computers for running bioinformatic pipe-
lines without investing in large and expensive cluster systems of bioin-
formatic infrastructure. The EDNA approach could be usable for all types
of pathogens in all types of hosts, and could work with any NGS plat-
form. The flexibility given by the possibility to periodically modify or
build custom tailored databases of e-probe sets plus the lower computa-
tional requirements favor the implementation of endless applications
limited only by the imagination of the scientific community.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.mimet.2013.07.002.
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